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Abstract-Video encoding services are known to be 

computationally intensive. ln a software environment, it is 

desirable to be able to adapt to tbe available computing 

resources. Therefore, modem live video encoders bave tbe 

"elasticity" feature. That is, their algoritbmic complexity adapts 

automatically to the number and capabilities of available CPU 

cores. ln otber words, tbe more CPU are allocated to a live video 

encoder, tbe higher the encoding performance. Until recently, 

tbe elasticity feature was used as an ad-hoc adaptation to 

uncontrollably varying conditions. ln this paper, mechanisms 

allowing to take control of the computing resource are 

presented. Two real-time resource optimizations strategies are 

then proposed. The first one is based on video content 

complexity and manages the video head-end costs, while the 

second relates to audience measurements and targets network 

bandwidth usage optimization. 

Index Terms-Video compression, live encoding, Kubernetes, 

orcbestration 

1. INTRODUCTION

ln the field of video encoding, microservices architecture is 
becoming more and more beneficial over monolithic 
applications. Toe concept of microservices [1][2] allows a 
dramatic reduction of the design and implementation cycles 
durations and simplifies support and update of the 
applications. The virtualization concept on the other hand, 
allows being highly flexible and independent ofthe hardware. 
ln the case of video compression, where performance is 
critical, the optimal granularity of the microservices must be 
optimized under constraints of real-time, low-latency, 
efficient data flow and availability. Practically, microservices 
must be stored in containers. The high number of containers 
requires orchestration. Among many available solutions 
[4][5][6], the work presented in this paper relies on Docker 
[7] for containerization and Kubemetes [5] for orchestration.

The video encoding solution considered in this paper is
composed of several independent services which are thus 
managed by Kubemetes. However, the performance of a 
practical implementation of a video encoder is a trade-off 
between bitrate, perceived video quality, computing resource 
and architecture design. Kubemetes allows controlling the 
number of resources dedicated to each microservice. Thus, in 
the video compression context, one may consider allocating 
the resource non uniformly to different video services, 
depending on the desired trade-off for each video service. 
This must be carried out explicitly by the user though, since 

Kubemetes, as an orchestrator, is blind to the specifics of 
each application. 
The proposed allocation solution will leverage previously 
introduced method [8] to seamlessly update the CPU for a 
service running on Kubemetes without service interruption. 
A full experimental system is demonstrated, applying the 
proposed dynamic resource allocation to a set oflive encoders 
deployed in a Kubemetes environment. The rest ofthis paper 
is organized as follows: first, some elements of context and 
preliminary results are provided. Then two versions of the 
custom-orchestrator are detailed, complexity-based and 
audience-based. Finally experimental results are provided for 
each mode before conclusion. 

II. CONTEXT, ELASTICITY AND CPU ALLOCATION

A given video encoder implementation can provide several 
trade-offs between resource consumption and video quality. 
This is the case, for example, with the High Efficiency Video 
Coding (HEVC) implementation x265 [9]. The tuning 

parameter ( -preset ) allows choosing a speed/coding 

performance trade-off in a range of predetermined settings. ln 
this paper, the considered encoder adapts automatically to the 
available computing resources. That is, given the real-time 
constraint, the encoder chooses its parameters automatically 
depending on the platform capacity and current load. This 
tuning is updated dynamically. If the overall load of the 
platform changes, the tuning changes accordingly. The more 
computing resources available, the better the delivered 
coding efficiency. This concept is called video encoder 
elasticity [14]. 

As an illustration of the elasticity concept, example 
experiments have been conducted using the HEVC codec in 
its default configuration. All the considered video sequences 
have a 1080p (high definition, HD) resolution. Fig. 1 presents 
rate-distortion curves [12] for several encodings ofthe sarne 
12 minutes movie extract. Each encoding is performed in 
real-time, with a fixed number of central processing unit 
(CPU) cores allocated to the corresponding microservice. ln 
the video compression context, a rate-distortion curve 
illustrates the trade-off between bitrate and distortion ( or 
quality) achieved by an encoder implementation or 
configuration. A configuration is found to be better than a 
reference configuration if its rate-distortion curve is above the 
reference rate-distortion curve. That is, for a given distortion, 
the bitrate is found to be lower, or conversely, for a given 
bitrate, the quality is found to be higher. The experimental 
observations confirm that the encoder adapts to the available 
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computing resource. lndeed, all the curves of Fig. 1 have 
been generated with strictly the sarne configuration, except 
for the number of CPU allocated. Thus, the rate-distortion 
performance improves as the CPU number increases. 
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Fig. 1: Rate-Distortion curves for different CPU core allocations. 
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Fig. 2: Sum ofMean Squared Errors (MSE) for different CPU 

allocations among two video channels. 

ln a second experiment, the encodings of two different 12 

minutes movie extracts are considered. Toe two contents have 

the sarne resolution and are both encoded using HEVC. An 

arbitrary fixed budget of 20 CPU cores is allocated to be 

shared between the two encoders. One must note that this 

fixed CPU budget is shared in a controlled manner between 

the two channels. A first part is allocated exclusively to the 

first channel, and the remaining part is allocated exclusively 

to the second channel. One may split it even and allocate 1 O 

CPU cores to each channel or decide to allocate more CPU 

cores to one ofthe channels. The goal ofthis experiment was 

to find the optimal repartition of these 20 CPU cores between 

the two encoders, which minimizes the distortion for a given 

bitrate. The experiment showed that the allocation that 

maximizes the overall quality is not uniform, as illustrated on 

Fig. 2. 

Both encoders have the sarne configuration, the difference 

is the encoded content itself. The channel 2 contains more 

complex content compared to channel 1. A video sequence is 

said to be more complex if it contains more information, like 

more motion or image texture, than the other sequence. The 

encoder must make more effort on a complex sequence to 

achieve the sarne coding efficiency as on a simple sequence. 

Ili. COMPLEXITY BASED ORCHESTRATION 

A. Dynamic CPU allocation

The second experiment (Fig. 2) showed that for two 

channels with the sarne configuration, the allocation that 

minimized the distortion - thus maximizes the video quality 

- is not a uniform allocation, but rather a CPU cores

distribution where the channel with high content complexity

needs to be allocated more than the lower content complexity

channel. Additionally, it is well known that the characteristics

of contents are not constant in time. This is especially true for

a 24/7 live channel. With a limited number of computational

resources, dynamic resource allocation can improve the

overall compression efficiency of a set of live channels.

The encoders run as part of a micro-services application in 

a Kubemetes cluster. All encoding services are running in 

Pods, the smallest Kubemetes manageable unit. A Pod 

contains one or several containers, and the hardware 

resources (CPU, memory, ... ) are managed at the container 

level. Toe native and supported way for Kubemetes to update 

the resources allocated to a container in a given Pod is to stop 

and restart the Pod with the desired resources allocation. 

For a live video encoder, the reboot of the Pod even for 

milliseconds will lead to the loss of multiple video frames. 

However, service interruption of a live service is not 

acceptable. ln a previous work [8] authors proposed a method 

for dynamic resource allocation for Kubemetes Pods with 

zero downtime. 

The allocation system relies on an interaction between 

operating system features and Kubemetes <levice plugin 

feature [11]. lt consists in updating the number ofresources 

advertised to the Kubemetes scheduler and changing the 

current allocation using the Linux system tools in a way that 

is transparent to Kubemetes. 
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Fig. 3: Resources updating and orchestration process. 

Fig. 3 present the interaction between Kubemetes cluster 

and the dynamic allocation service (PodHandler). The 

PodHandler gets the new allocation computed by the 

orchestrator, then interacts with the <levice plugin to update 

the number of custom resources advertised to Kubemetes 

Scheduler, the next step is to update the Pod's Cgroups [10] 

Completely Fair Scheduler Quota (CFS Quota) that controls 

the Pod's CPU usage limit. Linux tool taskset is used to 

change CPU affinity to meet the new allocation. Finally, the 

resource state is updated for every server in a database 

managed by the Resource Allocation Daemon service. 
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system running live. From a large set of varied sequences, 

several subsets have been selected to perform our 

experiments. Little variation in the results has been observed, 

as long as the subsets are heterogeneous. ln a sense, the 

behavior of the system is comparable to a statistical 

multiplexer (statmux), as an allocation for a set of sequences 

having all the sarne characteristics brings little to no gain. The 

following example has been kept as a meaningful 

representative of these experiments. 

Four 1080p channels of 5 minutes duration, encoded using 

an HEVC encoder, configured in constant quality mode and 

targeting the sarne video quality. This mode delivers variable 

bitrate (VBR) streams. Therefore, the performance at a given 

quality is measured by the bitrate. The better the allocation, 

the lower the bitrate. An arbitrary number of 28 CPU cores is 

available to be shared between the 4 channels. These channels 

have all different content complexity leveis. 

Two allocation scenarios are run and compared. The first is 

a uniform allocation, where every channel gets a fixed 7 CPU 

cores no matter its content. The second is dynamic allocation; 

in this mode, the orchestrator will compute the optimal 

allocation periodically based on the content complexity. 
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Fig. 6: Dynamic allocation of 28 CPU cores among 4 channels 

encodings. 

Fig. 6 illustrates the changes of the allocation over time 

for the four channels depending on their respective 

complexities. As one may expect, the sports content is more 

complex than the others, hence a larger allocation has been 

granted to it almost all the time. 

TABLE I: BDRATE GAINS COMPARED TO UNIFORM ALLOCATION. 

Movie-1 Movie-2 Sports Animation Mean 

BDRate 2.93% 2.63% -8.85% 1.23% -0.51 %

For the proposed combination of sequence and settings, 

rate distortion curves are derived from which Bjimtegaard 

Delta Rates (BDRates) [3] can be computed. Table I presents 

the BDRate gains relative to the uniform allocation. 

Negatives values indicate a gain (bitrate reduction), and 

positives values a loss. The first observation is that resource 

augmentation for one channel implies resource reduction for 

at least one other channel, leading to BDRate lasses. Still, 

with the proposed dynamic allocation, an overall BDRate 

gain is achievable. 

However, the BDRate is a relative performance metric 

especially when comparing sequences with different content 

types. The actual bitrates are provided in Table . The overall 

performance is measured by the sum of the bitrates for the 4 

channels, with a lower total bitrate indicating better 

performance. 

TABLE II: BITRATES 1N MBPS FOR ALL RUNS AT THE SAME QUALITY. 

Uniform Dyoamic Gaio 

Movie-1 0.686 0.709 3.35% 

Movie-2 0.245 0.250 2.04% 

Sports 4.015 3.469 -13.6%

Aoimatioo 0.195 0.198 1.54%

Total 5.141 4.626 -10%

Compared to uniform allocation, dynamic allocation 

reduces the bitrate by 10%. For the highest bitrate sequence, 

Sports, the required bitrate is reduced by 13.6% thanks to 

dynamic allocation, which represents more than 0.5 Mbps on 

a very demanding content. The absolute bitrate increase on 

the other channels is comparatively negligible. Gaining more 

than 0.5 Mbps on a channel is an opportunity to reach more 

users with the full resolution quality. For the content provider, 

it also translates into cost control. With uniform allocation, 

more CPU cores would be necessary to reach the sarne bitrate 

as the proposed solution, hence a higher cost. ln a summary, 

this experiment showed 10% overall bitrate gain in dynamic 

allocation mode while using the sarne CPU budget and 

achieving the sarne video quality. 

2) CPU Usage Optimization
ln the previous experiment the goal was to allocate the

available CPU cores in order to reduce the required bitrate at 

a given video quality. ln a case where the aim is to minimize 

the encoding cost, i.e., to use less CPU cores ( e.g., when using 

public cloud) or increase the channels density (have more 

channels in the sarne server), dynamic allocation allows 

reducing the total CPU cores required for a set of channels 

compared to the uniform allocation mode while achieving the 

sarne bitrate for the sarne video quality. 

TABLE III: BITRATES (MBPS) FOR UNIFORM AND DYNAMIC ALLOCATION 
WITH DIFFERENT CPU BUDGET. 

Movie-1 

Movie-2 

Sports 

Aoimatioo 

Total 

Uoiform 44 Dyoamic 28 Gaio 

CPU Cores CPU Cores 

0.679 0.709 

0.246 0.250 

3.546 3.469 

0.2 0.198 

4.671 4.626 

4.42% 

1.63% 

-2.17% 

-1% 

-0.96% 

The experiment setup is the sarne as the previous one, four 

live HD channels are encoded with an HEVC encoder in 

constant quality mode. For the uniform allocation, 44 CPU 

cores are allocated to the channels (11 cores for each). The 

Table III shows the bitrates achieved for a given video quality 

in the uniform and dynamic CPU allocation modes. For the 

dynamic allocation, a total budget of 28 CPU cores is 

allocated which is 36% less than the 40 CPU cores of the 

uniform allocation. Y et, a gain of 0,96% of required bitrate is 

achieved compared to the uniform allocation mode. ln 
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