Audience and complexity

aware live video encoders orchestration

CITE THIS ARTICLE

Moussaoui, Abdelmajid; Guionnet,Thomas; Raulet, Mickaél; 2022. Audience and complexity aware live video encoders orchestration. SET
INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi: 10.18580/setijbe.2022.5. Web
Link: http://dx.doi.org/10.18580/setijbe.2022.5

@ ® COPYRIGHT This work is made available under the Creative Commons - 4.0 International License. Reproduction in whole or in part
i i provided the source is acknowledged.

Audience and complexity aware live video
encoders orchestration

Abdelmajid Moussaoui, Thomas Guionnet, and Mickaél Raulet.

Ateme {a.moussaoui, t.guionnet, m.raulet} @ateme.com

Abstract—Video encoding services are known to be
computationally intensive. In a software environment, it is
desirable to be able to adapt to the available computing
resources. Therefore, modern live video encoders have the
“elasticity” feature. That is, their algorithmic complexity adapts
automatically to the number and capabilities of available CPU
cores. In other words, the more CPU are allocated to a live video
encoder, the higher the encoding performance. Until recently,
the elasticity feature was used as an ad-hoc adaptation to
uncontrollably varying conditions. In this paper, mechanisms
allowing to take control of the computing resource are
presented. Two real-time resource optimizations strategies are
then proposed. The first one is based on video content
complexity and manages the video head-end costs, while the
second relates to audience measurements and targets network
bandwidth usage optimization.

Index Terms—Video compression, live encoding, Kubernetes,
orchestration

I. INTRODUCTION

In the field of video encoding, microservices architecture is
becoming more and more beneficial over monolithic
applications. The concept of microservices [1][2] allows a
dramatic reduction of the design and implementation cycles
durations and simplifies support and update of the
applications. The virtualization concept on the other hand,
allows being highly flexible and independent of the hardware.
In the case of video compression, where performance is
critical, the optimal granularity of the microservices must be
optimized under constraints of real-time, low-latency,
efficient data flow and availability. Practically, microservices
must be stored in containers. The high number of containers
requires orchestration. Among many available solutions
[4][5][6], the work presented in this paper relies on Docker
[7] for containerization and Kubernetes [5] for orchestration.

The video encoding solution considered in this paper is
composed of several independent services which are thus
managed by Kubernetes. However, the performance of a
practical implementation of a video encoder is a trade-off
between bitrate, perceived video quality, computing resource
and architecture design. Kubernetes allows controlling the
number of resources dedicated to each microservice. Thus, in
the video compression context, one may consider allocating
the resource non uniformly to different video services,
depending on the desired trade-off for each video service.
This must be carried out explicitly by the user though, since

Kubernetes, as an orchestrator, is blind to the specifics of
each application.

The proposed allocation solution will leverage previously
introduced method [8] to seamlessly update the CPU for a
service running on Kubernetes without service interruption.
A full experimental system is demonstrated, applying the
proposed dynamic resource allocation to a set of live encoders
deployed in a Kubernetes environment. The rest of this paper
is organized as follows: first, some elements of context and
preliminary results are provided. Then two versions of the
custom-orchestrator are detailed, complexity-based and
audience-based. Finally experimental results are provided for
each mode before conclusion.

II. CONTEXT, ELASTICITY AND CPU ALLOCATION

A given video encoder implementation can provide several
trade-offs between resource consumption and video quality.
This is the case, for example, with the High Efficiency Video
Coding (HEVC) implementation x265 [9]. The tuning
parameter (—preset) allows choosing a speed/coding
performance trade-off in a range of predetermined settings. In
this paper, the considered encoder adapts automatically to the
available computing resources. That is, given the real-time
constraint, the encoder chooses its parameters automatically
depending on the platform capacity and current load. This
tuning is updated dynamically. If the overall load of the
platform changes, the tuning changes accordingly. The more
computing resources available, the better the delivered
coding efficiency. This concept is called video encoder
clasticity [14].

As an illustration of the elasticity concept, example
experiments have been conducted using the HEVC codec in
its default configuration. All the considered video sequences
have a 1080p (high definition, HD) resolution. Fig. 1 presents
rate-distortion curves [12] for several encodings of the same
12 minutes movie extract. Each encoding is performed in
real-time, with a fixed number of central processing unit
(CPU) cores allocated to the corresponding microservice. In
the video compression context, a rate-distortion curve
illustrates the trade-off between bitrate and distortion (or
quality) achieved by an encoder implementation or
configuration. A configuration is found to be better than a
reference configuration if its rate-distortion curve is above the
reference rate-distortion curve. That is, for a given distortion,
the bitrate is found to be lower, or conversely, for a given
bitrate, the quality is found to be higher. The experimental
observations confirm that the encoder adapts to the available

This open access article is distributed under a Creative Commons Attribution (CC-BY) license.,
http://www.set.org.br/ijoe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

57

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, 8p
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/ISSN (Online): 2446-9432

computing resource. Indeed, all the curves of Fig. 1 have
been generated with strictly the same configuration, except
for the number of CPU allocated. Thus, the rate-distortion
performance improves as the CPU number increases.

46 Bitrate Gain s
44 j
g:; a2
g a0
/ —— 5 CPU Cores
38 —— 8 CPU Cores
—— 10 CPU Cores
20 CPU Cores
36

2 4 6 8 10 12
Bitrate (Mbps)

Fig. 1: Rate-Distortion curves for different CPU core allocations.

11.4 —

11.2 /

11.0 /
10.8 /

10.6

104

N
102 \/

10.0

of SEof hannelslan 2

Su

[5-15]) [8-12] [10-10] [12-8]

CPU Allocation [channell - channel2]

Fig. 2: Sum of Mean Squared Errors (MSE) for different CPU
allocations among two video channels.

[15-5]

In a second experiment, the encodings of two different 12
minutes movie extracts are considered. The two contents have
the same resolution and are both encoded using HEVC. An
arbitrary fixed budget of 20 CPU cores is allocated to be
shared between the two encoders. One must note that this
fixed CPU budget is shared in a controlled manner between
the two channels. A first part is allocated exclusively to the
first channel, and the remaining part is allocated exclusively
to the second channel. One may split it even and allocate 10
CPU cores to each channel or decide to allocate more CPU
cores to one of the channels. The goal of this experiment was
to find the optimal repartition of these 20 CPU cores between
the two encoders, which minimizes the distortion for a given
bitrate. The experiment showed that the allocation that
maximizes the overall quality is not uniform, as illustrated on
Fig. 2.

Both encoders have the same configuration, the difference
is the encoded content itself. The channel 2 contains more
complex content compared to channel 1. A video sequence is
said to be more complex if it contains more information, like
more motion or image texture, than the other sequence. The
encoder must make more effort on a complex sequence to
achieve the same coding efficiency as on a simple sequence.

III. COMPLEXITY BASED ORCHESTRATION

A. Dynamic CPU allocation

The second experiment (Fig. 2) showed that for two
channels with the same configuration, the allocation that
minimized the distortion — thus maximizes the video quality
— is not a uniform allocation, but rather a CPU cores
distribution where the channel with high content complexity
needs to be allocated more than the lower content complexity
channel. Additionally, it is well known that the characteristics
of contents are not constant in time. This is especially true for
a 24/7 live channel. With a limited number of computational
resources, dynamic resource allocation can improve the
overall compression efficiency of a set of live channels.

The encoders run as part of a micro-services application in
a Kubernetes cluster. All encoding services are running in
Pods, the smallest Kubernetes manageable unit. A Pod
contains one or several containers, and the hardware
resources (CPU, memory, ...) are managed at the container
level. The native and supported way for Kubernetes to update
the resources allocated to a container in a given Pod is to stop
and restart the Pod with the desired resources allocation.

For a live video encoder, the reboot of the Pod even for
milliseconds will lead to the loss of multiple video frames.
However, service interruption of a live service is not
acceptable. In a previous work [8] authors proposed a method
for dynamic resource allocation for Kubernetes Pods with
zero downtime.

The allocation system relies on an interaction between
operating system features and Kubernetes device plugin
feature [11]. It consists in updating the number of resources
advertised to the Kubernetes scheduler and changing the
current allocation using the Linux system tools in a way that
is transparent to Kubernetes.

Get Pod and
New Container IDs Master
allocations

o

Get old allocation
and CPU status
Setnew
allocation and
CPU status

Update cpu quota for
the corresponding Pod

Set Real-ime Priority for the
App and Update CPU Afiinity

Resourcesil Cgroups Filesystem

Allocation ; 7

Desrion [epeiz] [ipodir]
¥

Content characterisitcs

Fig. 3: Resources updating and orchestration process.

Fig. 3 present the interaction between Kubernetes cluster
and the dynamic allocation service (PodHandler). The
PodHandler gets the new allocation computed by the
orchestrator, then interacts with the device plugin to update
the number of custom resources advertised to Kubernetes
Scheduler, the next step is to update the Pod’s Cgroups [10]
Completely Fair Scheduler Quota (CFS Quota) that controls
the Pod’s CPU usage limit. Linux tool taskset is used to
change CPU affinity to meet the new allocation. Finally, the
resource state is updated for every server in a database
managed by the Resource Allocation Daemon service.

This open access article is distnbuted under a Creative Commons Afiribution (CC-BY) license
http //www.set.org.br/ijoe/ dor: 10.18580/setijbe 2022.5 Web Link http //dx.doi.org/10.18580/sehjbe.2022 5

58

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, 8p.
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/1SSN (Online): 2446-9432

B. Complexity based orchestration

The orchestrator computes optimal CPU resource allocation
and relies on the PodHandler to apply this allocation. The
orchestration algorithm is organized in two steps:

- Predicting the bitrate gain with the help of a machine

learning algorithm

- Computing the optimal allocation that minimizes the

function (1), based on the bitrate gain predictions:

J=XYib; + 4 d;, (1

where, N is the number of channels b; is the bitrate of the
channel i, d; is its video distortion and A4 is the Lagrange
multiplier.

For the first step, the orchestrator uses a trained machine
learning model that predicts for every channel the possible
gain of a given CPU allocation with respect to a reference
allocation, the model takes as input several parameters:

- Video Codec (HEVC, AVC, AV1...)

- Channel configuration (Frame rate, resolution, bit

depth...)

- Video quality (PSNR)

- Number of CPU cores

- Channel’s complexity estimation

04 —— Model Prediction
. @ \Validation Encoding

-100 4

—150

Bitrate reduction (kbps)

—200

® o ¢ o © © & 0 0 0 o

—250

5 8 12 15 20
CPU cores Allocation

04 —— Model Prediction

@ \Validation Encoding
—200 1
~400

—-600 4

—-800 4

Bitrate reduction (kbps)

—1000 -

—1200

5 8 12 15 20
CPU cores Allocation

Fig. 4: Bitrate gain predicted by KNR model for, (a) low
complexity channel, (b) high complexity channel.

A K-Neighbors Regressor (KNR) [18] algorithm is used
for this task. The dataset is composed of various encodings
with different configuration and content complexity. Fig. 4
illustrates the predictions made by the model for two different
video sequences. The first sequence exhibits low complexity
content and the second one high complexity. Both contents
are encoded by an HEVC encoder and have the same
configuration (25 fps, 1080p resolution, 8-bit depth...). The
graphs in Fig. 4 show the KNR model estimation of the

bitrate gain for a given CPU allocation with respect to the
minimum allocation (5 CPU cores here), the video quality
remaining constant. The complex channel takes better
advantage of any additional CPU core. Additionally, from a
CPU cores number threshold, additional CPU core will no
longer provide bitrates reduction. This threshold is much
higher for the high complexity channel than for the low
complexity channel. Finally, the reliability of the prediction
is assessed by comparing it to the actual encoder behavior.

In a second step, the result of gain estimation is used to
compute the optimal allocation that will minimize the cost
function. The algorithm proposed is a greedy algorithm, and
since all curves predicted by the KNR model are strictly
decreasing, it is guaranteed that it will return the optimal
solution.

Let N be the number of channels in a given server,
minAllocation returns the minimum allocation possible for a
video channel to operate normally and M is the disputed CPU
cores given in function (2):

M = totalCPUs — YN, minAllocation;)

Allocation Algorithm

Initialize with the minimum allocation
Output: allocation
For channel = 1 to N do:
allocation[channel] <-- minAllocation[config]
End

For cpu <-- 1 to M do:
For channel = 1 to N do:
CurrentAlloc <-- allocation[channel]

gain[channel] < — — KNR(currentAlloc,
complexity, quality, config) + A1x* d;
End

ChosenChannel <-- argmax(gain)

allocation][ChosenChannel] = allocation[ChosenChannel]
+1
End

Fig. 5: Allocation algorithm for complexity-based orchestration.

Since the model returns the bitrate gain for a constant
PSNR, the distortion term in the algorithm is also constant,
thus, the Lagrange multiplier can be put to 0.

The algorithm provided on Fig. 5 will return the allocation
that minimizes the total bitrate of all channels while keeping
the same video quality. Note that the number of allocated
CPU cores to the channels is an integer number, in order to
ensure optimal usage of threading and CPU cache memory.
After receiving the number of cores, the PodHandler will take
care of finding the best CPU affinity considering the NUMA
architecture [13] of the physical processor.

C. Complexity-based orchestration experimental results

1) Bitrate minimization
Many tests have been conducted with various
configurations and repeated to validate the stability of the

This open access article is distributed under a Creative Commons Attribution (CC-BY) license.
http://www.set.org.br/ijbe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

59

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET |JBE V.8, 2022, Article 5, 8p.
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/ISSN (Online): 2446-9432

system running live. From a large set of varied sequences,
several subsets have been selected to perform our
experiments. Little variation in the results has been observed,
as long as the subsets are heterogeneous. In a sense, the
behavior of the system is comparable to a statistical
multiplexer (statmux), as an allocation for a set of sequences
having all the same characteristics brings little to no gain. The
following example has been kept as a meaningful
representative of these experiments.

Four 1080p channels of 5 minutes duration, encoded using
an HEVC encoder, configured in constant quality mode and
targeting the same video quality. This mode delivers variable
bitrate (VBR) streams. Therefore, the performance at a given
quality is measured by the bitrate. The better the allocation,
the lower the bitrate. An arbitrary number of 28 CPU cores is
available to be shared between the 4 channels. These channels
have all different content complexity levels.

Two allocation scenarios are run and compared. The first is
a uniform allocation, where every channel gets a fixed 7 CPU
cores no matter its content. The second is dynamic allocation;
in this mode, the orchestrator will compute the optimal
allocation periodically based on the content complexity.

18

—— Movie-2

16 —— Animation
—— Movie-1

Sports

14
Average Allocation

ol
“ 1 L m

o 50 100 150 200 250 300
Time (s)

CPU Cores Allocation

Fig. 6: Dynamic allocation of 28 CPU cores among 4 channels
encodings.

Fig. 6 illustrates the changes of the allocation over time
for the four channels depending on their respective
complexities. As one may expect, the sports content is more
complex than the others, hence a larger allocation has been
granted to it almost all the time.

TABLE I: BDRATE GAINS COMPARED TO UNIFORM ALLOCATION.
Movie-1 Movie-2 Sports Animation Mean

BDRate 2.93% 2.63% -8.85% 1.23%

For the proposed combination of sequence and settings,
rate distortion curves are derived from which Bjentegaard
Delta Rates (BDRates) [3] can be computed. Table I presents
the BDRate gains relative to the uniform allocation.
Negatives values indicate a gain (bitrate reduction), and
positives values a loss. The first observation is that resource
augmentation for one channel implies resource reduction for
at least one other channel, leading to BDRate losses. Still,
with the proposed dynamic allocation, an overall BDRate
gain is achievable.

However, the BDRate is a relative performance metric

0.51%

especially when comparing sequences with different content
types. The actual bitrates are provided in Table . The overall
performance is measured by the sum of the bitrates for the 4
channels, with a lower total bitrate indicating better
performance.

TABLE II: BITRATES IN MBPS FOR ALL RUNS AT THE SAME QUALITY.

Uniform Dynamic Gain
Movie-1 0.686 0.709 3.35%
Movie-2 0.245 0.250 2.04%
Sports 4.015 3.469 -13.6%
Animation 0.195 0.198 1.54%
Total 5.141 4.626 - 10%

Compared to uniform allocation, dynamic allocation
reduces the bitrate by 10%. For the highest bitrate sequence,
Sports, the required bitrate is reduced by 13.6% thanks to
dynamic allocation, which represents more than 0.5 Mbps on
a very demanding content. The absolute bitrate increase on
the other channels is comparatively negligible. Gaining more
than 0.5 Mbps on a channel is an opportunity to reach more
users with the full resolution quality. For the content provider,
it also translates into cost control. With uniform allocation,
more CPU cores would be necessary to reach the same bitrate
as the proposed solution, hence a higher cost. In a summary,
this experiment showed 10% overall bitrate gain in dynamic
allocation mode while using the same CPU budget and
achieving the same video quality.

2) CPU Usage Optimization

In the previous experiment the goal was to allocate the
available CPU cores in order to reduce the required bitrate at
a given video quality. In a case where the aim is to minimize
the encoding cost, i.e., to use less CPU cores (e.g., when using
public cloud) or increase the channels density (have more
channels in the same server), dynamic allocation allows
reducing the total CPU cores required for a set of channels
compared to the uniform allocation mode while achieving the
same bitrate for the same video quality.

TABLE III: BITRATES (MBPS) FOR UNIFORM AND DYNAMIC ALLOCATION
WITH DIFFERENT CPU BUDGET.

Uniform 44 Dynamic 28 Gain
CPU Cores CPU Cores
Movie-1 0.679 0.709 4.42%
Movie-2 0.246 0.250 1.63%
Sports 3.546 3.469 -2.17%
Animation 0.2 0.198 -1%
Total 4.671 4.626 -0.96%

The experiment setup is the same as the previous one, four
live HD channels are encoded with an HEVC encoder in
constant quality mode. For the uniform allocation, 44 CPU
cores are allocated to the channels (11 cores for each). The
Table I1I shows the bitrates achieved for a given video quality
in the uniform and dynamic CPU allocation modes. For the
dynamic allocation, a total budget of 28 CPU cores is
allocated which is 36% less than the 40 CPU cores of the
uniform allocation. Yet, a gain of 0,96% of required bitrate is
achieved compared to the uniform allocation mode. In

This open access article is distributed under a Creative Commons Attribution (CC-BY) license.,
http://www.set.org.br/ijoe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

60

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, 8p.
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/1SSN (Online): 2446-9432

summary, this experiment shows that one can save up to 36%
of CPU cores when applying a content complexity aware
dynamic allocation on a set of live channels in a public or
private cloud.

IV. AUDIENCE AND COMPLEXITY BASED ORCHESTRATION

The complexity-based allocation method optimizes the
video encoding performance in the video head-end. The result
was a lower overall bitrate compared to a uniform allocation.
However, some channels have seen their required bitrates
increased because they are less complex. In a real use-case,
some channels may be more popular than the others, so the
bitrate gain, or loss, of a channel affects the video traffic on
the network and is eventually multiplied by the number of
viewers that are watching the channel.

In this chapter, a new method is introduced to take the
channel audience into account in addition to the content
complexity when computing the allocation. Just like
complexity, the number of viewers of a live channel can
change over time, therefore dynamic allocation is the more
suitable allocation mode.

Users
[]
ame
= O

——
Origin

~

Fig. 7: Video streaming over CDN.

A. Video distribution network

Live Video streaming can be performed through different
set-ups, either a digital video broadcast or an OTT (Over the
Top) media streaming. A typical example is OTT streaming
over a content delivery network (CDN) as presented in Fig.
7, which is one of the most used set-ups for live and VOD
streaming (Video on Demand).

-
1)
/\/\/\/_\ . r/_\.
(A AN
&
0 L]
Fig. 8: Example of CDN architecture, with Origin server in blue,
nodes in yellow and edge caches in green.

A CDN is a group of geographically distributed and
interconnected servers, it provides cached content to the end
users. In the field of video streaming, CDN is an essential
component in the distribution scheme. Video channels

require a high bandwidth to be transmitted, some channels
can have thousands or possibly millions of viewers watching
at the same time. The origin server usually has limited
capabilities, thus cannot serve all the viewers, even if it can,
the viewers could be distributed all over the world, the stream
then should travel a long distance for every single viewer.
Using a CDN, the stream is provided once by the origin and
delivered to the edge cache servers in the viewers’ regions, so
all the viewers in the same geographic area can fetch the
content from the nearest CDN edge cache (Fig. 8).

There are various solutions to get the audience
measurements, from the CDN itself like Wowza Media
System, which provides a near real-time API [16] to query
the number of viewers for a given channel, or, directly from
the players, as for example, Smart Sight API [17] by Media
Melon, which gives real-time analytics collected from the
players.

Allocation Algorithm

Initialize with the minimum allocation
Output: allocation
For channel = 1 to N do:
allocation[channel] <-- minAllocation[config]
End

For cpu <-- 1 to M do:
For channel = 1 to N do:
CurrentAlloc <-- allocation[channel]
gain[channel] < — — (1 +v;) *
KNR(currentAlloc, complexity, quality, config) +
Ax v+ d;
End
ChosenChannel <-- argmax(gain)

allocation[ChosenChannel] = allocation[ChosenChannel]
+1
End

Fig. 9: Allocation algorithm for audience and complexity-
based orchestration.

B. Cost function optimization

The goal is to minimize the overall distributed data over the
network by the streaming, going from the origin server where
the channels are encoded, to the end users passing through the
CDN edge cache servers, under the constraint of the video
head end limited CPU resource. The cost function to
minimize is given as (3):

J=3Lib;(A+v) + Ax v+ d; 3)

Where, N is the number of channels, b; is the bitrate of the
channel i, d; is its video distortion, v; the number of viewers
and A is the Lagrange multiplier. The 1 in the term (1 + v;)
corresponds to the stream distributed from the origin server
to the CDN.

To optimize the function, the previously trained KNR
model is still applicable. The greedy algorithm however

This open access arficle is distributed under a Creative Commons Attribution (CC-BY) license.
http://www.set.org.br/ijbe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

61

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, 8p.
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/1SSN (Online): 2446-9432

needs to consider the number of viewers of the channels. The
updated algorithm is presented in Fig. 9.

TABLE IV: OVERALL BITRATES GENERATED BY TWO CHANNELS, FOR
DIFFERENT VIEWERS DISTRIBUTIONS.

Sports-1 Movie-3 Uniform Dynamic Gain

Viewers viewers (Gbps) (Gbps) (%)
0% 100% 602.51 577.02 -4.23
5% 95% 617.41 596.0 -3.47
25% 75% 676.99 651.5 -3.77
50% 50% 752.09 751.46 -0.08
75% 25% 825.94 790.15 -4.33
95% 5% 885.52 820.1 -7.39
100% 0% 900.41 829.24 -7.9

C. Primary experiments

Several experiments have been conducted to emphasize the
importance of including the audience measurements along
with the complexity to maximize the encoding performance
in a cost-effective manner. In the first experiment, two HD
channels that have a nearly equivalent complexity levels are
encoded with an HEVC encoder in various scenarios. The
first channel Sports-1 is a 5S-minutes rugby match sequence,
and Movie-3 is an action movie with the same duration. An
arbitrary total number of viewers is taken as 100000 viewers
for both channels. The considered scenario is that X%
(percent) of the viewers are watching Sports-1 and (100 - X)
% are watching Movie-3.

1000
—— Uniform Allocation
——— Dynamic Allocation —
—— Gain /
» 800
=3
o
Q
c
= /
5 6004 ==
£
o
o]
a
2 4004
@
2
B
=]
= 2004
0 T T T T T
0 25 50 75 100

Viewers watching Sports-1 (%)

Fig. 10: Bitrate over the distribution network of two similar
complexity channels with uniform and dynamic CPU allocation.

In all the different scenario presented in Table IV and Fig.
10, the proposed dynamic orchestrator managed to perform
better than the uniform allocation, with a gain varying as a
function of the viewers distribution. In the case where the two
channels are equally popular, the number of viewers is the
same and the complexity is equivalent, so the dynamic
orchestrator will allocate approximately a uniform allocation
and that explain why the gain is low. Also, the sequence
Sports-1 is slightly more complex than Movie-3, that why the

total bitrate and the gain are larger when the Sports-1 is the
most viewed.

1000

—— Uniform Allocation
—— Dynamic Allocation e

—— gain
800 4
600 1 /

400 1

Total distributed bitrate in Gbps

200 -

6 5 2‘5 50 7‘5 §5160
Viewers watching Sports-1 (%)

Fig. 11: Bitrate over the distribution network of two different

complexity levels channels with uniform and dynamic CPU

allocation.

The second experiment is conducted in the same
configuration, two HD channels encoded with an HEVC
encoder. However, the sequences in this experiment have
different complexity levels. The first sequence is Sports-1,
and the second is Movie-1, a historical movie. The results are
shown in Fig. 11. In the case of equal popularity, the
orchestrator still reduces the overall bitrate, because of the
complexity difference. Moreover, when the less complex
channel is the most viewed, there is always a gain with respect
to uniform allocation even if it’s smaller.

D. Full-scale experimental results

Here, a real use-case is simulated, where a content or
service provider has a set of live channels distributed to its
subscribers, each channel may be watched more or less than
the others. In this experiment four HD channels are encoded
with an HEVC encoder with the same configuration. The
video sequences used have different intrinsic content
complexity levels. The goal is to reduce the overall bitrate
generated by the channels over the distribution network
(CDN) when applying audience and complexity based
dynamic allocation compared to a uniform static allocation.

Several scenarios are considered where the distribution of
viewers is different. The total number of viewers is 100000,
the different distributions of the viewers over the 4 channels
are provided in Table V.

TABLE V: VIEWERS DISTRIBUTIONS SCENARIO DESCRIPTION.

Sports Movie-1 Movie-2 Animation
Scenario-1 70000 10000 10000 10000
Scenario-2 10000 70000 10000 10000
Scenario-3 10000 10000 70000 10000
Scenario-4 10000 10000 10000 70000

In the first scenario, the channel Sports is considered the
most watched, with 70% of total number of viewers, while
the other channels get each 10% of the total viewers. The
results are presented in Table VI, corresponding to the total
data generated by the four channels. The dynamic allocation
mode reduced this number by 13.33%, it is 45.95 Gbps

This open access arficle is distributed under a Creative Commons Attribution (CC-BY) license.
http://www.set.org.br/ijbe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

62

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, 8p.
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/1SSN (Online): 2446-9432

(Gigabit per second), and more than 14% of the most popular
channel spared just by changing the way that the available
CPU cores are allocated to the channel.

TABLE VI: TOTAL DATA GENERATED BY THE CHANNELS IN (MBPS).

Uniform Dynamic Gain
Movie-1 7812 8386 7.35
Movie-2 2920 2998 2.66
Sports 331813 285137 - 14.07
Animation 2163 2237 3.42
Total 344708 298758 -13.33

The other scenarios have been tested as well; the results are
summarized in Table VII. In all the presented use cases, the
orchestrator succeeds in finding the optimal allocation that
reduces the total bitrate. The most popular channel will have
a larger weight (3), and consequently may be allocated more
CPU cores. The gain is maximal when the complex channel
is the most viewed, this is the expected behavior as illustrated
in Fig. 2, where the potential bitrate gain increases with the
content complexity.

TABLE VII: PERCENTAGE OF TOTAL BITRATE REDUCTION MADE IN
DYNAMIC CPU ALLOCATION COMPARED TO UNIFORM CPU ALLOCATION.

Scenario-1 Scenario-2 Scenario-3 Scenario-4
Movie-1 7.35 -8.12 0.06 0.63
Movie-2 2.66 12.37 -8.84 7.19
Sports - 14.07 -6.73 -6.46 -6.56
Animation 342 1.84 -0.34 -1.06
Total -13.33 -5.42 -7.41 -2.01

V. CONCLUSION

In this paper, a new method is introduced for computing
the CPU allocation for live video encoders. It is demonstrated
that dynamic allocation is more suitable and give a significant
bitrate reduction compared to a uniform static allocation. In a
first mode, complexity aware dynamic orchestration showed
a gain up to 13.6% on a very demanding content, and an
average of 10% reduction of the overall bitrate required by
four channels. The second proposed mode considers the
number of viewers for each channel in an OTT streaming
environment. This method offers further gains, with more
than 14% reduction of the overall bitrate distributed over the
network by a complex channel, and an average of 13.33%
compared to a uniform allocation.

Finally, the proposed method needs 36% less CPU cores
compared to a uniform allocation to achieve the same video
quality at the same bitrate, which could reduce the operational
costs significantly.

REFERENCES

[17 N. Dragoni et al, Microservices: yesterday, today, and tomorrow 2016.
https://doi.org/10.48550/arXiv.1606.04036

[2] Francesco et al, Architecting with microservices: A systematic
mapping study. https://doi.org/10.1016/j.jss.2019.01.001

[3] G.Bjentegaard, Calculation of average PSNR differences between RD-
curves, Technical Report VCEG-M33, ITU-T SG16/Q6, Austin,
Texas, USA, 2001.

[4] Docker Inc., Docker Swarm, Container’s orchestrator.
https://docs.docker.com/engine/swarm/key-concepts/

[5] The Linux Foundation , Kubernetes Platform Container’s
Orchestrator. https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/

[6] The Apache Software Foundation , Mesos A distributed systems
kernel. http://mesos.apache.org/

[71 Docker Inc , Docker Software containerization
https://docs.docker.com/get-started/overview/

[8] A. Moussaoui, M. Raulet and T. Guionnet, "Dynamic Seamless
Resource Allocation for Live Video Compression on a Kubernetes
Cluster," in SMPTE Motion Imaging Journal, vol. 131, no. 4, pp. 45-
49, May 2022, doi: 10.5594/IM1.2022.3160832.

[91 MulticoreWare Inc, https://x265.readthedocs.io , x265 HEVC

platform.

implementation.

[10] Serge Hallyn, Linux Control Groups File System
https://man7.org/linux/man-pages/man7/cgroups.7.html

[11] The Linux Foundation , Kubernetes device plugin
https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/device-plugins/

[12] Yochai Blau

https://onlinelibrary.wiley.com/action/doSearch?Contri

bAuthorRaw=Berger%2C+Toby, Rethinking Lossy
Compression: The Rate-Distortion-Perception Tradeoff
https://doi.org/10.1002/0471219282.e0t142.

[13] Linux Kernel Organization, NUMA

https://www.kernel.org/doc/html/v4.18/vm/numa.html

Herbest et al, Elasticity in Cloud Computing: What It Is, and What It Is

Not. https://www.usenix.org/conference/icac13/technical-

sessions/presentation/herbst

[15] J. Vanne et al. Comparative Rate-Distortion-Complexity Analysis of
HEVC and AVC Video Codecs

[16] Wowza Inc. Viewers data API https://www.wowza.com/docs/how-to-
get-viewer-data-for-a-wowza-cdn-stream-target-by-using-the-wowza-
streaming-cloud-rest-api

—
=
~

=

[17] MediaMelon Inc. Players QoE analytics API
https://www.mediamelon.com/product-smartsight-qoe
[18] Kramer, O. (2013). K-Nearest Neighbors. In: Dimensionality

Reduction with Unsupervised Nearest Neighbors. Intelligent Systems
Reference Library, vol 51. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-38652-7_2

Abdelmajid Moussaoui received an
engineering degree in multimedia
networking from Telecom-Paris,
Paris, France, in 2020. He is a research
engineer in the Research and
Innovation Department of ATEME.
His current research areas are video
encoding, codec orchestration in the
cloud, and machine learning. He holds
several pending patents related to the
optimization of the orchestration of live video channels
distribution in the cloud.

Thomas Guionnet is a fellow
research engineer at ATEME, where
he currently leads the innovation
team’s research on artificial
intelligence applied to video
compression. Beyond his work for
ATEME, he has also contributed to
the ISO/MPEG - ITU-T/VCEG -
VVC, HEVC, and HEVC-3D
standardization process; he teaches video compression
at theESIR Engineering School, Rennes, France; and
he has authored numerous publications including
patents, international conference papers, and journal
articles. Prior tojoining ATEME, he spent 10 years at

This open access arficle is distributed under a Creative Commons Attribution (CC-BY) license.
http://www.set.org.br/ijbe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

63

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, 8p.
2022 SET - Brazilian Society of Television Engineering / ISSN (Print): 2446-9246/1SSN (Online): 2446-9432

Envivio conducting research on real-time encoding,
video-preprocessing, andvideo quality assessment. He
holds a PhD from Rennes 1University, Rennes.

Mickaél Raulet is the chief
technology officer at ATEME, where
he drives research and innovation
with various collaborative research
and development projects. He
represents ATEME in several
standardization bodies: ATSC, DVB,
3GPP, ISO/IEC, ITU, MPEG, DASH-
IF, CMAF-IF, SVA, and UHDForum.
He is the author of numerous patents and more than 100
conference papers and journal scientific articles. In 2006, he
received a PhD from INSA in electronic and signal
processing, in collaboration with Mitsubishi Electric ITE,
Rennes, France.

Received in 2022-07-08 |Approved in 2022-08-17

This open access arficle is distributed under a Creative Commons Attribution (CC-BY) license.
http://www.set.org.br/ijbe/ doi: 10.18580/setijbe.2022.5 Web Link: http://dx.doi.org/10.18580/setijbe.2022.5

64

